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THE EXISTENCE AND CALCULATION OF SOLUTIONS OF CERTAIN
INTEGRO=DIFFERENTIAL EQUATIONS IN SEVERAL DIMENSIONS
INTRODUCTION

In this paper, boundary and initial value problems will be solved for
linear integro-differential equations, in several dimensions, of a type in=
cluding linearized forms of Boltzmann's equation. The methods of solution
are based on finite differences and are thus suitable for calculation.

These methods are indirect, for our difference scheme is proved to
converge, not for the original problem, but for a modification of it, whose
solution approximates that of the original. A better difference scheme, or
a better proof of convergence, might eliminate the need to modify the original
problem. This need to modify the problem, however, may be real, desirable
in numerical practice as well as in iheory.

Most discussions of the integro-differential equations treated here
occur in the context of neutron transport theory, of which a comprehensive
aceount is to be had in B, Davison's book [1]. Calculation techniques in
transport theory are also surveyed in R. D. Richtmyer's book [2] and in a
subsequent paper (3] of E. H. Bareiss. The first proof that general multi-
dimensional problems resembling ours have solutions was given by semi-group
methods by K. J¥rgens [4]. We do not refer here to the extensive literature

on problems in one or two dimensions.
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1. Statement of problem. Notation. Main Results, Let

X: Ixl<c r=1..,4

designate a d-dimensional cube of edge 20, the symbol x=(x1,x2, ...,xd)
referring to any of its points. let y = (yl, ...,yd) and y' = (yi,...,yé)
denote any d-dimensional vectors and dy' = dy:'L ...dy('i the d-dimensional
element of volume, and let t be an independent variable on the semi=axis
t > 0. The equations considered are those of the form

d

1.1 u * Zym o+ e(x,y,t)u = \fK(x,y,t,y') ulx,y',t)dy' + glx,y;t)
r=1 T

with coefficient c(x,y,t) and inhomegeneous part g(x,y,t) defined in a

(2n+1)=dimensional cylindrical drum,

Sp xeB, 0<tLT, -0 <y <@ (T=const. > 0), s = 1,...,4

and with kernel K(x,y,t,y') defined in a (3n+l)-dimensional cylinder

over ST ,

ZT: (x,y,t)e gy —®< yL <0, s= 1, ..., d.

The domain of integration here has been taken as the entire d-dimensional
y'~space, although a bounded portion, or a lower dimensional subset, would
have been equally acceptable. Unlike Jorgens, we do not exclude a neighbor-
hood of the origin from the domain of integration.

Later on, So will denote the base, t = 0, of ST". S(o) will be
the set of points of ST on any of the planes Yp = 0, r=1,..., d. For

e>0, s'*) 4ill be an e-neighborhood of S(°) 1 .

§;
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£T will denote an (n+1)~dimensional cylindrical drum with base X ,
namely

X,: xe$, O0gtgr.
: (o) . ‘ ot — . " ,
By £ p  Will be meant the set of points of b < ¢ on any of the planes

y.=0, r=1, ..., d.

The initial condition imposed is of the form
1-2 u(x,y’o) = ¢(x’}') .
The boundary condition is

1.3 u(x,y,t) = O when g yij(?c) <0,

where (Nj (X)) denotes the outward normal to B at X, a point of the boundary

not on an edge. This boundary condition can be written as

1.3¢ u(x,y,t) =0 for x ¢ B, y?
b}
where
|xs| <C, s 3r
Br y:
? -— H = 3
X, —Cr,y'c’ if yr<0

=-C,if y_ >0

is an appropriate one of the two faces

+

B: x.=C |x|<C forsdr,

r' r

B: x_==C, |xS|_SC forsr,

of I normal to the xr—axis. When V. = 0, no boundary condition is imposed,

oA < A N 4 N

and B in this case is to be taken as empty. For y.y,...¥ -Jr 0, the
Yy Y2 d

Br y (r=1,...,d4), d mutually perpendicular planes in d~dimensional space,
= J

3



all intersect in one point.
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lxsl <G, X #‘Cs,y

BI

r

-C if Yp

.+
=C if y,

<

([

Ty x, =C ify >0

0

0

for s#r

b IR T TR

we shall denote the face of 13 normal to the xf-axis on which u goes un=

prescribed.

U will denote the union of the planes Vg = 0, s=1,...,

equation of U is Ypeee¥yq = 0.

We shall seek, depending on the precise hypotheses, either "weak" or

"strong" solutions of 1.1, 1.2, 1.3.

DEFINITION 1: By a "strong" solution in S

function u(x,y,t) that, for constant x,t,

will be meant a bounded

is measurable with respect to

ys for constant y ¢ U is absolutely continuous with respect to t,x in

:C T :C éo)’ fulfills the initial and boundary conditions 1.2 and 1.3,

and satisfies 1.1 at almost all peints of ST'

"Weak" solutions are functions that satisfy the required conditions in

a certain integral sense. To arrive at an appropriate formulation, imagine

u to satisfy 1.1, 1.2, and 1.3

involved to admit the various operations we shall perform.

equation 1.1 by o(x,y,t)F'(u),

ously differentiable functions for all values of their arguments.

integrate over an arbitrary polyhedral domain D contained in the drum : 7°

strictly, and this and the other funetions

where F(u) and

We first multiply
o(x,y,t) are continu-

Then we

Letting D denote the boundary of D and (v,,v,)._ the outward
N i t i—l"..’d

4
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normal to this boundary, equationr 1.1 becomes, upon integration by parts,

j‘qa 1“(11)(\;t + 2y, vr)dS - F(u)(cpt + Zyr qaxr)dxdt

r
D D
1.4
=fq, F’(u){ —-cu + jl(udy' + g} dxdt .
3

Now we specialize D to .z:, 0< t£ T, take F(u) = u, and impose the

condition

1.5 =0 on BI",y’ r=1, ..., 4.

In view of 1.3' and 1.2, the integral over D in 1.4 thereby becomes

X
and relation 1.4

Scn delt:'r - gcpq)d_x,

j(pudxlt:_r = fq: gax + Jule, +zy o, )dxdt
i r

1.6 : ‘r'r

+ ‘ o(=cu + fKudy' + g)dxdt .

T
We thus arrive at
DEFINITION 2: u(x,y,t) is called a "weak" solution of 1.1, 1.2, 1.3
if relation 1.6 holds for all vectors y, all <t in the interval (O,T),
and all functions o¢(x,y,t) continuously differentiable in ST that satisfy
1.5.
Appropriate function classes for u and the other quantities involved

will be indicated below.

R
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Under rather light hypotheses, e.g., hypotheses (i)-(iv) below, a
(o)

bounded, absolutely continuous (in ST - 5'7’) weak solution is a strong

solution. This is so because the procedure that had led formally to 1.6
can, in the case of an absolutely continuous u, be reversed. Conversely,
a strong solution is weak.
Let V(ST) denote the space of bounded functions v(x,y,t) Lipschitz-
continuous on S,. Define V'(ST) as its completion under the norm
1/2
llvl]* = supT {.jkv(x,y,t))zdig $

04ts
all y

define V"(ST) as the completion of V(ST) under the second norm

/2
vl = SHP"rf(V(X,y,t))zdxdt} ;

y

let V(So) denote the space of bounded functions ¢(x,y) Lipschitz

continuous on So and V'(So) the completion of this space under the norm

ol = sup {g(Cb(x,y))zdx} V2 .

Any member of v'(sT) is a function w(x,y,t) such that

. , 1/2
W(y,t) = {j("’(x’y,t)) dx
- 4

is continuous in y,t; similar statements hold respecting the members of
V"(ST) and V'(So) . To see this, let vk(x,y,t), k=1,2y0e. ,

belonging to V(ST), approximate w in V'(ST) . Thus,

lim sup ‘Skvk(x,y,t) - vm(x,y,t))zdx =0. .
k,m=® 00 O4t4T J » '
all y
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This implies that the continuous functions

1/2
wk(y,t) = {é(vk(x,y,t) )2dx}

converge uniformly with respect to y,t , since by the triangle inequality

we have

- , ) 12
(5,0 = 3,00 < f [l td = vyl ) dx}
b4

and, therefore,

1im sup |Wk(y,t) - wm(y,t)l =0.
k,m-p co O4t8T
all y
Hence, W = lim wk is continuous, as asserted.
We shall prove the existence of weak solutions of our problem under the
following hypotheses:
(1) The coefficient c(x,y,t) is bounded and belongs to V"(ST).
(ii) The inhomogeneous part g(x,y,t) belongs to V"(ST).
(iii)The kernel K(x,y,t,y') satisfies the following conditions:
(a) X>0.

(b) A sequence of non-negative,continuously differentiable func-

tions Km(x,y,t,y') , m= 1,2,..., exists such that
le(x,y,t,y') - K (oytyt)ldyt < e

in S where the e, are constants that approach zero as m=§ o0,

T ’
(e) K(xy,t,y') < Ko(y,y') , where Ko(y,y') is integrable
vith respect to y' and also integrable with respect to y on any sphere

y| € const., and where
Iyl <

i
&
!
%
3
i
|
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jKo(y,y')dy' < ko
o)

k_ being a constant.

(d) For all y,

lim j.(j‘ll((x,y,t,y') - K(x,yl,t,y')]dy> dxdt = O,
I Y o
1

rT

(iv) The initial data function ¢(x,y) belongs to v'(so) .

If u is in V'(ST) and the above hypotheses are satisfied, the
integrals in 1.6 will be continuous with respect to y, t. We see this

first for the integral on the left, which can be expressed as a difference,

Jq;udx = %J(qa + u)zdx - %J‘(q) - u)2dx R

of two terms already known to be continuous. Analogous considerations apply
to the first and second integrals on the right and also to f ecudxdt and

jq)gdxdt . The integral
‘f dxdtjl(vdy' ’
z‘r

in which v = gu, 1is easily seen from Schwarz' inequality and hypothesis
(iiic) to be continuous in < uniformly with respect to <,y . Hence, all

that remains is to prove that

'cj\ (S(K(xstt»Y') - K(xsyl’tsY'))V(x’y':t)dY') dxdt
T

tends to zero as yl—) Y. Fubini's theorem and Schwarz' inequality show the
latter integral, in absolute value, to be
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y 1/2
< de' {:SIK(X,y,t,Y' FK(X:YI:t’Y' ) Idth} {Jlx(anat;Y' )~ K(x',yl,t,‘y') |
& T

/2
(v(x,y' ,t))2dxdt}
1/2
< !g g(jlx(x’y’t’Y' ) - K(X..Yl. t,y' ) IdY') dxdt}
;T ,

] 5 1/2
"J\ SIK(x’y’t’}") - K(x,yltt;Y')l (V(X,Y',t) ) dxdtdy'} ’

Z.

and by (iiic) to be

1/2 1/2
< (2ko) l Ivl I‘V" { S (JIK(XSY9tSY') - K(x’Yl:t’Y' ) ldYD dth} .
Xr

This tends to zero by (iiid). Thus, all the integrals that enter 1.6 are

indeed continuous in y,t, as asserted.

THEOREM 1 (Existence of weak solutions): Under hypotheses (i)-(iv),
the problem of satisfying 1.1, 1.2, 1.3 has a weak solution belonging to
v(sy) .

The weak solutions we shall actually construct belong to a narrower
class than that ascribed to them above, and in the narrower class they are
unique, i.e., are uniquely determined by their initial data. These weak
solutions, namely, all have the property, hitherto unmentioned, of satisfy-—

ing the inequality

1.7 j(u(x,y,'r))zdx < §(¢(x,y))2dx + ij{—cuz + u | Kudy' + gu} dxdt
) 4 2z T

for all vectors y and all <t in the interval (0,T). This inequality,
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like 1.6, is formally deducible from 1.4 in which we would take

D= _,F(u) = u* and ®= 1 to obtain

2 ; o — a2 : ' -
.Su (vt +2‘.r yrvr)dS =2 I{ cu” + uIKudy + gu} dxdt .
2. £

The left member of the latter relation, however, equals

T

' Y- . AY)R 2 ,

j‘(u(x,y,‘r)) dx - fu(x,y,O)) dx + Z_ é‘dt f u Zr AR dx ,

% £ B

dsx denoting the element of area on Bé » while on Bé z YpeVp > 0. From
these remarks, inequality 1.7 easily follows, at least for strict solutions
of suitably regular problems. For weak solutions as described, the inequality

will be seen to carry over by closure.

THEOREM la: The weak solutions rendered in Theorem 1 constitute a
linear class W each of whose members u(x,y,t) is subject to inequality
1.7 with appropriate ¢(x,y) and g(x,y,t) .

THEOREM 2 (Uniqueness of weak solutions): The members of W are
uniquely determined by their associated ¢'s and g's: the member correspond-
ingto ¢=0 and g= 0, in particular, is u = 0.

When c¢,g,$, and K are requisitely smooth (continuous differentiability
would be emough), and, in addition, K is sufficiently attenuated near
Y' = g a strong solution of the problem exists. Respecting ¢, g, and §,
the following assumptions, added to the previous, suffice:

(i)u c(x,y,t) and g(x,y,t) are uniformly Hdlder-continuous with
respect to x, s = 1,...,d, with Holder exponent a(0 < & < 1) and HOlder

constants denoted by . and bn’ respectively.

10
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(i)t e(x,y,t) and g(x,y,t) are uniformly Lipschitz-continuous with
respect to t.

(iv)1 ¢(x,y) is Lipschitz~continuous with respect to x with a
uniform constant denoted by ¢l .

(It might be expected that these conditions should be of the same kind,
all Lipschitz, or all H8lder, conditions. With all Lipschitz conditions, the
solution, however, still could not be proved to be more than HOlder con-
tinuous (with any exponent < 1 in an appropriate region), and with only
H81lder conditions nothing could be proved at all. Therefore, the three
hypotheses have been left of different kinds.)

Respecting K, four new assumptions are made:

(v), For t>0, At>0,

j.lx(x.r}'rt + At,)’gzl - K(x,y,t,y' )l dy* .S kl ,

where k1 is 'a constant.

(v), With ox 3 0, x(r) = (xl""’xr-l’xr+ A“}’xr+l""’xd) ,

2

we have

(r) ' '
SIK(X Yo tey') = K(x_:}'»t',}'r )| dy' < ka , r=1,...,d4 ,

a i
I Ox '
r
where ku is a constant.

(v)3 Let y&r) = (yi,..., VAT y;+l,...,yé). A positive A\ and, for
each r=1,...,d, a function xr(yzr)), exist such that, if |y1"| <N,

K(x,y,t,y") S Kr(yzr))
and

11
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f“r(ytr)’ W) £ K

for r=1,...,d, where k 1is a constant.

(v)4 A constant K, exists such that

JWK(x,y,t,y')[yI'.l dy' < K, r=l,...,d
We can now state
THEOREM 3 (Existence and uniqueness of strong solutions): Under
hypotheses (i)-(iv), (i)u, (i)t’ (iv)l, (v)1 - (V)L, the problem of satis<
fying 1.1, 1.2, 1.3 has a strong solution, which is H&lder-continuous in
Sy = sto) and, for any € > 0, uniformly so in S - s{®) | This solution

is unique.

The paper is organized as follows:

Section 1: Statementrof problem, Notation. Main results.
Weak and strong solutions are défined and the main results as to their

existence and uniqueness stated.

Section 2: Uniqueness and continuous dependence. Weak solutions of the

class W defined above (W includes all strong solutions) are proved

to depend continucusly on their initial data and thus, in particular,

to be uniquely determined by their data (Theorem 2). Since the weak
solutions obtained (Theorems 1 and la) belong to W , they are thus
seen to be independent of accidental features, like selection procedures,
pertaining to the comstruction process.

Section 3: Positivity. Monotonic dependence ofrsolutigg on data, co-

gffipignt, kerngl, apdrighomgggneous part of equation. The solution is

shown to be positive when the quantities indicated have appropriate

12
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fixed signs. All solutions, therefore, depend monotonically upon these
quantities.

Section 4: Truncated problems. Proof of Theorems 1 and la, A special kind

of problem is defined that later proves solvable by finite differences.
Anticipating that the solutions of these special problems exist, we
here show how they can be used to approximate the solutions of arbitrary

problems. Thus, Theorems 1 and la are proved.

Section 5: Difference,scheme”ngtgtion. Some remarks. The remarks are con=

cerned mainly with our treatment of the improper integral.

Section 6: Statement of,difﬁerence equations. The difference equations are
set up under assumptions deemed appropriate. They are shown to be
recursive.

Section 7: Outline of convergence proof. Estimates deferred to Sections 8

and 10 prove that, as the mesh widths vary, the solutions of the
difference equations are compact. This fact and uniqueness (Theorem 2
and Section 2) prove the solutions of the difference equations to
converge to a weak solution of the corresponding problem.

Section 8: A bound for the solution of the difference equtiqns andran

estimate for its t-difference quotients. Two of the estimates applied

in Section 7 are developed.

Section 9: Boundary behavior. The manner of the assumption of boundary data

and related questions are discussed for solutions of difference
equations; the results are applied in Sections 10 and 11.

Section 10: Lipschitz conditions in truncated problems. The remaining

estimates required in Section 7 are given.

12a
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Section 11: H8lder conditiong:;guuntruncatedfp;oblems. Proof of Theorem 3.

Estimates are obtained that have the effect, under appropriate

hypotheses, of showing that a weak solution is strong.

2. Uniqueness amd continuous dependence. Uniquéness and some allied

properties are demonstrable under fewer restrictions as to K +than those

of section 1. Assumption (iii), namely, can be replaced by

(iii)o K(x,y,t,y') is integrable with respect to x,t,y' on Sp -

Furthermore,
[K(X,Y:t:}")l < KO(Y’Y') s “

where Ko(y,y’) is integrable with respect to y' , and integrable with

respect to y on any sphere |y| < const., and where
t ] —
SKO(Y,Y Jay' < k, (ko = constant) .

Our earlier uniqueness statement (Theorem 2) is included in

THEOREM 2.1. Under hypotheses (i) and (iii)o, a function u(x,y,t)

belonging to v'(sT) and satisfying inequality 1.7 with $=0, g=0

12b
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is zero almost everywhere in S’I"

This fact is an obvious corollary of an estimate below for the growth of

U(t) = sup f(u(x,,y,t))zdx .
y

2

In stating this estimate, for convenience we suppose
(i)o ¢ is a non-negative, bounded member of V"(ST). (Non=negativity
is merely a normalization arising, for instance, as a result of a substitu-

tion u = "% with sufficiently large \.)

(iii)o, (iv), a function u{x,y,t) belonging to V'(ST) that satisfies
inequality 1.7 for all y and for O <t < T also satisfies the integral

inequality
21 U(t) < (1012 + [[g][v?)elZot 1)

for 0< t < T. (The norms have been defined in Section 1.)

Proof: From 1.7, sinece ¢ > 0, we have

2.2 f(u(x,y,’r))zdx < 4] |'2 + 2 f “{quudy' + gu} dxdt

Z &
for all vectors y and'all <t in the interval (O,T). By Schwarz' in-
equality and (iii)o,

( JKudy ')2

A

(Jix Idy') (jlxluzdy')

kojKO(Y,Y') (u(x,y',t))zdy' 5

A

hence, by Fubini's theorem,

13
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2
2.3 j (fKudy') dx < kojdx jxo(y,‘y:) (u(x,y',t))2 dy"
ﬁ = kOJKO(y’y')dyl y(u(x,Y',t))z dx
< kﬁu(t).

Consequently,

lju (qudy') dxdt |
£

IA

g udxdt S ( j Kudy') dxdt}

T
< Xk, fU(t)dt .
0

This, inequality 2.2 , and Sehwarz' inequality applied to Lfgudxdt enable

us to deduce from relation 2.2 the inequality

2 . 1/2 7
we) < 10112+ el fuum) s f s()at
0 0]
p
< 1O + llgll™® + (2, + 1) J"u-mdt,
0

valid for 0 <t < T . It is easily seen that, for 0< t< T, U(t) <

V(t), where V(t) is determined by the conditions

v (t)

(2k° + 1)v(t)

81102 + llgll? .

v(0)

Thus, estimate 2.1 is justified.

14
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3. Positivity, Monotonic dependence of solution on data, coefficient;

kernel, and inhomogeneous part of equation. When the coefficient, the in-

homogeneous part, and the data are positive, the solution will be positive,
too. This is more precisely stated in
THEOREM 3.1. Under hypotheses (i)=(iv), let u(x,y,t) denote the weak
solution belonging to class W of which we are assured in Theorems 1 and
la. If
c >0, g>0, ¢>0,
then
u>0
at almost all points of ST'
A significant consequence of positivity is that u depends monotonical-
lyon —-c, g, K, and § , as we assert in
THEOREM 3.2. Consider two problems of the form specified in 1.1, 1.2,
and 1.3, each satisfying hypotheses (i)-(iv). Distinguishing corresponding

quantities in the two problems by the subscript 1 or 2 , assume ¢y 2 0 and
¢, 2 e, g 2 B K > K, 0 20,

denote by uy and u, the weak solutions, in W, of these respective problems

as provided by Theorem 1. At almost all points of ST ’
Uy 2 uy -
Theorem 3.2 is proved by noting that the difference v = u;—u,
initially is non-negative and is a weak solution of the equation

15
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i - ] - - 1y t - .
v, + Zijxj + eV = levdy + ((02 e u, + J(‘Kl,,xz)uzdy + e 82)

The expression in parentheses being non-negative, Theorem 3.1 applies.

Theorem 3.1 need be proved but for bounded, Lipschitz~continuous solutions
since, as appears from Sections 2, 4, and 7, the (weak) solution of an ar-
bitrary problem can be approximated by solutions, which are bounded and
Lipschitz-continuous, of related,approximating, "truncated" problems. We
shall therefore assume that u is bounded and Lipschitz-continuous.
(Lipschitz~continuity with respect to x,t for almost all y, as is the case
for a strong solution in the absence of truncation, would work equally well.)
Relation 1.4 holds for any Lipschitz~-continuous solution, and we may make
the following substitutions:

2Agbt - 2obt

Fluy=u, u=e , = ,

where 5 is an arbitrary number > 1. Thereby, 1.4 becomes

= =2k 6t
3.1 J‘v(vt +2‘.yrvr)dS = J‘i-(&m{os)v + J‘dey. +ge © } dxdt ,

D D

a relation for the new dependent variable v. Obviously, it suffices to

prove

3.2 v> 0 in s,

Imagine that, to the contrary, for some positive valueof T we have

3.3 m = inf v(x,y,t) < 0 .
x e}
all y
<te

16
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In this case, a vector y* exists such that

3.4 n* = min v(x,y*,t) < m/s .
x el
O<t<T

Let the minimum m* be realized at a point P*: (x*,t*), 0< t* < T, i.e.,

’
3.5 V(x*)}'*9t*) = m*,

and assume t* the least value of t at which this minimum occurs. Thus,
3.6 v(x,y*,t) >m* for 0<t<t*, xeXk.

By relations 3.3 and 3.4,

j‘K(x,y,t,y") v(x,y',t)dy* > km> kB m*.

Hence, and because g > O, equation 3.1 implies

{ - . - y - m*
jv(vt + Eyrvr)dS > fcvdxdt k ¢ j(a m* )dxdt .
D D D

If N is a neighborhood of P* such that v(x,y*,t) < m%/2 in ‘tT NN,

we thus have, since ¢ >0,

3.7 jV(vt +z yrvr)ds > 0

3]

for DC r T NN . This, however, is incompatible with the minimality of
m* expressed in 3.5 and 3.6 , which we see as follows.

For t > t* and h> 0, consider the truncated (d+1)-dimensional
pyramid
|xj - x}l < |y3*|(to- t) , §=1,...,4,
BTy Lnd

(s t*~-3h £ t < t*

17
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with altitude 3h. ''he apex of the pyramid is at the point (x*,to). We

choose h and t’o - t* so0 small that

3.8 Pyr, ,hC N .
(o}

R = Pyrtc,h ﬂfT .

The boundary of R cansists of a

pyramid and also, possibly, of a "vertical" piece, or pieces, over the

boundary of § . (At a point (‘xl,...,x d,t) of a "vertical" piece of the

boundary of R , some x_ = Iec.)

With 0< q<h, let

pln),

OIINON

denote an interior point of R not farther from P* than the distance 1 .

Assuming t*%-h < t(q) < t* , conmsider

. lxi - x§n)— y;(b—t(q)ﬂ
=0 0 <t(")-t5h.

¥or sufficiently small € ,

3.9 Q n c Pyrtc‘,h '

’

The two horizontal faces

F % = =" ¢yl < e/2
R

and

62-193

Evidently, 3.7 then holds whenever D C R, where

sloping portion belonging to the

the parallelepiped

< ¢f2, i=1, ...,4,

} i=l’ ooo,d’

18
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(n)
X, — X < 8/2’ i=l, --o’d’

L)

of the parallelepiped are each of area ¢ . The nonhorizontal (d=1)-

dimensional faces are parts of the planes

x, = xiq) + y*{(t - t(n)) z /5 ;

for the normal v = (vl, cees Vg vt) to one of these faces we note that

d

3.10 vy * il y; v, =

O L]

Knowing P* , we can select h such that, for any selection of P(n)

and all sufficiently small ¢ ,

3.11 Qe,"C:R .

If x* is intérior to b, this is evident from 3.9 , for h in this case
can be so reduced that the space component x of any point (x,t) of

Pyrt ,h also will be interior to %. If, on the other hand, x* is on the
boungary of ¥, we see from 1.3 and 3.5 that, at x* , the vector y*
points outward from £ . Hence, the characteristic — — — the straight line
with slopes dxi/dt =y} i=1, ..., d-—~ through P*, positively
oriented in the sense of increasing t , points outward from R : the seg-
ment of the characteristic for which t¥*-h < t < t* , in particular, is
contained within R . Corresponding segments of neighboring (parallel)
characteristics also will be contained within R . Q

€, 1
generated by such segments. Hence, P(n) being selected, Qs n will be
’

» however, is

contained within R, as asserted, if ¢ is sufficiently small.

19
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Because of 3.11 and 3.8 , we can choose D = Qe " in 3.7. In
3

view of 3.10, inequality 3.7 then reduces to

Fy P

Dividing this by ed and letting € ~#0 proves

ey —ve™) 5 o,
vhere B\ i the point with the coordinates xg") - y*h , NG
Now letting n<» O proves :

v(P*) — v(P**) >0 ,

where P** is a point on the plane t = t* = h . This contradicts the mini-
mality of m* , i.e., contradicts 3.5 and 3.6 , and in view of the boundary
condition we conclude that m* = O ., This means statement 3.2 holds, all

we needed to prove.

4. Truncated problems. Proof of Theorems 1 and la. A problem of the

type described in section 1 will be called "truncated" if g(x,y,t), 1like
K(x,y,t,y') , is non-negative and both are zero when y is in a neighbor-
hood of the union U of the planes Yo = 0, s=1, ..., d . Truncated
problems play an essential role in our proof of Theorems 1 and la, for their
solutions, properly combined, approximate the solution of any problem, while
they themselves are solvable by finite difference methods. Their solvability
will be discussed in section 7, their approximative capability here: the

effect of the combined discussion is to prove Theorems 1 and la.

20
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Our present aim, stated more precisely, is to show that the weak
solution of an arbitrary problem can be approximated in V'(ST) by the
solutions of appropriate truncated problems with, say, continuously differen—
tiable coefficient, kernel, data and inhomogeneous part. We anticipate the
fact, to be proved in Section 7, that such truncated problems have Lipschitaz-
continuous strong solutions. Three steps are involved.

The first step is to understand that, under any stipulated boundary and
initial conditions, equation 1.1 is solvable for any g satisfying
hypothesis (ii) if solvable for any such non<negative g . Any g subject
to (ii) can be represented, in fact, as a difference

g=8 ~ 8 (g5 &8, > 0)
of non-negative functions also subject to (ii). If u, and u, are veak
solutions of the respective relations

Lul =8 +5Kuldy' ’ Lu2 = 8, + unzdy' ’

= Z'. g - -
vhere Lv vyt ryrvxr +cv, then u u - u, evidently is a weak

solution of the equation

Lu=g+ LfKudy' s
Thus, it suffices to be able to solve 1.1 for non-negative g , as asserted.
In what follows, we shall generally assume g > 0 .

The second step is concerned with problem 1.1, 1.2, 1.3 when g > O
and ¢, g, K, and § are all continuously differentiable besides satisfying
hypotheses (i) to (iv); for convenience, (i)o (Section 2) also is assumed.

The (weak) solution of such a problem will be exhibited as the limit of

solutions of appropriate truncated problems. It will belong to W . More,

21
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if u and v are the solutions of two such problems, say with

] - ) . 1
u * Iy, tou = g 4+ leudy

u(x,y,0) = bl(x’Y) »

— Ivt
{vt + z;yrvxr + eV = g, + jkzvdy

v(x,y,0) = Qz(xny) ’

1 b4
K= Kl » 8= gl —g2 + (02 -cl)v + 5(K1-K2)V dy' ’ °= 01 -¢2 ; by
Theorem 2.2, it will then Bellow that

) .2 2 2
41 [levl 1% < el 100,012 + [leg b2 + 1l(eprevl[®? +
+(max ju(l - Klag)|Ivl[*?)
S
T

where C is a constant. (An estimation is used like that for 2.3.) This
step, the main task of the present section, will be carried out presently.
The third step is to perceive that the solution of a general problem,
one satisfying hypotheses (i) to (iv), can be approximated by solutions of
problems of the type considered in the second step. The latter solutions
belonging to W , their limit, the solution of the given general problem,
too belongs to W : Theorems 1 and la are thus proved. We shall carry out
the third step now, assuming the second to be valid, and then return to
Justify the latter. We make assumption (i)o for convenience, in place of
(1), and take g > O, as from the first step we may. Then we approximate

¢ in V'(So) by a sequence of continuously differentiable functions

22
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¢k(x,y) , k=1,2, ..., g in V"(ST) by a sequence of non-negative,
continuously differentiable functions gk(x,y,t), k=12... , and ¢

in V"(ST) by a bounded sequence of nonenegative, continuously differentiable
functions ck(x,y,t), k=1,2,... 3 K we approximate by the K, of
hypothesis (iiib). It follows from step two that, for each k , the problem
corresponding to ¢k’ ¢,» gy K has a solution w_ with uniformly bounded

norr ]luk||' and that, for all k and m,

oy = wgl 1'% < 0Cl1g, = 0,112 + Hg = gyl 1% + 11(e, = oyl
+ (Ek + Em)||um|l'2) .

Each term on the right tends to zero, howéver, as k,m-» o, because of
(i1iib), other stipulated approximation properties, and the existence of
uniform bounds for the c, and the llukll' . Hence, the u _ converge in
V'(ST), and, as is easily seen, the limit u is a weak solution of the
given problem belonging to W . Theorems.l and la thus hang on the validity
of the second step.

In justifying the second step, we shall actually do more. By V+(ST)
will be meant the class of functions w , defined on ST » each of which
is the limit of a monotonically increasing sequence of functions belonging
to V(ST) . Analogously, by V+(S°) will be meant the class of functions
defined in S° each of which is the limit of a monotonically increasing
sequence of functions belonging to V(So) . We replace the earlier

hypotheses by the following:

R U U o+ v
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(1)¥ e(x,y,t) is bounded, and =c belongs to V+(ST) .
(11)" g(x,y,t) is non-negative and belongs to V+(ST) ,’
(111)* (a) k> 0.
(b) A non-decreasing sequence of non-negative, continuously
differentiable functions Km(x,y,t,y'), m=1,2,,.., exists such that
K(x,y,t,y') = 1lim Km(x,y,t,y')
m = 00
at all points of ZT .
(¢) the same as (iiie) .

(iv)" § belongs to V*(So) .

These assumptions obviously are satisfied when g > O, O, c, g, and K are
continuously differentiable, and (iiia,c) hold. Hence, the second step in
the argument above will be justified when we prove

THEOREM 4.1. Under hypotheses (i)” - (iv)" , a weak solution of class
W of 1.1, 1.2, 1.3 is obtainable as the monotone limit of solutions of
appropriate truncated problems. If u and v are the solutions of differ—
ent problems, each satisfying hypotheses (1) -~ (i)t , uw-v 1is subject to
an ineguality of the form 4.1 .

The last statement is an obvious corollary of the first, the inequality
in question being obtainable as the limit of analogous inequalities for the
(Lipschitz-continuous) solutions of the approximating truncated problems.
The first statement depends on a suitable procedure of setting up truncated
problems to approximate the given one,

Let o(s) be a monotonic, infinitely differentiable function on the

-positive semi-axis s 2 0 such that

24
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o(s) 0 for 0<s< 12

1 for s_>_1 .

For m> 1, the function

q’m( s) = o(2s™™)

thus is monotonic and infinitely differentiable and satisfies the conditions

om(s) = 0 for s < (/)"
= 1 for s > (12" .
Moreover, for s > O
epm(s) 71 as m Ao

If p(y) is a non-negative function of the vector y = (yl, ...,yd) , We

define a "truncation" of p as

d
p,(¥) =TT om(lyjl) - ply) .
j=1

For y t U, a truncation evidently tends monotonely to its "original:

p,(¥) 7 p(3) as n—v® if y¢Uu.

Let us now consider a problem satisfying hypotheses ()t - (.{L,v)+ N
We shall first approximate §(x,y), —-c(x,y,t), g(x,y,t), and K(x,y,t,y")
by non-decreasing sequences @k(x,y), -ck(x,y,t), gk(x,y,t), and

functions. We then truncate the 8y and K with respect to y . The

k
truncated functions, denoted by

25
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gkm(x’Yrt): m= 1,2, ...,

Kkm(x’y’t,y' ), m= l, 2’ csey

-for fixed Xk increase monotonely with m . They define, for each k and m,

what we have called a truncated problem. Any such truncated problem, however,
as will be seen below (section 7), can be solved (by finite difference
methods); its solution U is bounded uniformly with respect to k and

m (Theorem 8.1), is Lipschitz=continuous and thus satisfies appropriate
relations of the form 1.6 and 1.7, and increases monotonely with m and

with k (Theorem 3.2). Hence, the limit

u = lim 1lim ukm
k*00 meoO

exists and satisfies 1.6 and 1.7 , i.e., is a weak solution of class W
of the original problem. This proves Theorem 4.1.
The remainder of the paper will be concerned with suitably smooth,

truncated problems.

5. Difference scheme notation. Some remarks. Let § >0, 1> 0,

>0 with I=C/% an integer, and set

e = 1/
let L be a positive integral multiple of . By i and j we shall mean
mlti~indices

i = (il’ seey id), _I S is S I, S=1, .k." d’

i = (j19 ceey jd)’ ljsl < L, S

1’ sy d’

with integral components, and by &€ i = (g iy eeer & 1d) and

26
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n, = (njl, csey qjd) corresponding points of § and of y-space, respectively.

. Symbols such as 1i' , § i' , j' , n j' will be similarly used. For any

multi=index, such as 1,

we shall write

[i] = max Iirl .
r
. The set of all multi~indices i such that, for some s =1, ..., d,
i.=1, [irl < I for rts ,

will be called e9+ > and the set such that, for some s ,
5

is =-I,

3, -

correspond to BS v and
’

J.,s

1
to Bs,y . (Recall that

ibed on B' .
er n 8,y )

='&"

Iirl < I for ris,

éf' . These sets correspond to B; and E; , respectively. The sets

+ _
s for js < 0

for j_ > 0
s
s

empty set for j =0

the sets

= -0

for js < 0
=1

ryd
., 4

DS KA

d: +Jd] for j = 0

u 1is prescribed zero on Bs v and is unpres-
?

27
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Let S;*M" genote the set of lattice points (£1, nj, nt) in xyt-

space, where 1 and Jj are multi-indices as above, and n 1s a non-negative

integer. Our aim in the difference scheme below will be to approximate the
solution u(x,y,t) of a given, truncated problem by functions ui’n’T(x,y,t)
defined on Si’n’T . When £ , 9, 1T, and L are regarded as fixed, for
brevity we write

ui"‘]"f(;: i, nj, nt) = u:j ’

and for any function d¢(x;y;t), unless otherwise specified,

n . n
¥(Ei, nj, nt) = ‘bi;j ’ ‘pxs(zi’ nj, nt) = ‘l’xs,ij ’

etc. In the case of the kernel K , we write

n _ ~1-d-2d
1

Kijjl— TE J'K(x:y’t:Y') dy'dxdtdy ,

'ngj'
the domain of integration being the parallelepiped

Blo<x < Eij+1), s=1,..,4d,
g Sy < nlig+ 1), "
vn
t . 3t 1 1 "
i3yt s ﬂ.]ssys< fl(js“’l) ’

n<t < t(n+1) .

(In this definition, it is presumed that K is defined for -I < Xg < I+ .
We might, for instance, take K = O for any xg > I.) When all the defini-

tions of this section are concluded, we shall come back to note certain

28
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consequences of this one.

Let Xr be the translation operator whose effect on the multi=index 1
is to increase its r—~th component by one while not changing the other com-
ponents:

xr(i) -— xr(il, sesy ir-l, ir’ ir"’l’ 2oy id)

= (il, s 00y il‘-l’ ir+ l’ ir+1, [N ] id) L]
The effect on a function indexed with i , say ¢:J s 1is defined by

n _ ,n
¥ 0% W,

The imverse of this operator, denoted by X;l , reduces ir by one while

leaving all other indices the same. The operator

T.,5=% for §.<0

= XL for i_>0
r r

hag the effect of moving i nearer é)r,j .

As analogous to Xr, let Yr denot; the translation operator whose
effect is to increase jr by one while not affecting other indices, and
Y;l its inverse. In terms of these, conventional »~ and y-difference

operators are introduced as

5.1 ar = Xr- l’ er = Yr- 1, r= 1’ csey d »
and
5.1 6r = 1‘ xr » Gr = 1-' Yr ’ r= 1’ sesey d F)
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but we also shall use

5.2 b, 3=1=X" when j > 0,

=X =1 wvhen j_ < O,

r r
and
5.2 5,5 = X,-1 when j_ > 0,
=1 =X when j_ < O
T r ¢
We note that
5.3 ip 8y, = Igrl (1- Tr,j) ;

this property will turn out to be a significant one.
We now return,as promised, to our kernel approximation. Anticipating
hypothesis (iii)l in section 6, assume K(x,y,t,y') to be continuous at

almost every point of ZT . Note at the same time that the step funection

K;:,q,'t(x’y’t’y') K;jj' in ?I:J:V for IJI ’ IJ'I S L

0 for |j] > L or [§'] > L

tends to K(x,y,t,y') in ZT at each of its points of continuity, as
Ey 1, T=20, L~?o . Then

5.4 1lim Ki""r (x,5,t,¥') = K(x,y,t,y') almost everyWhere in %

Eyn,T»0 T
L
Furthermore,
5.5 IKE’Q’T(X’Y’t’Y') dy' _<_ jK(X’Y’t,Y') dy' < ko .

30




pe———

NOLTR 62~193

These facts suggest that we attempt to approximate the improper integral in
equation 1.1 by sums (these are essentially Riemann sums) of the form

'ld Z K;‘.ljjl u:’:j' .
RRIR

The attempt succeeds when the step functions

nt £t <(n+ 1)t
ui’n’T(x,y,t) = ugj for JE i < x < (is+ 1)¢ (5=1,...,d)

nig Sy < (G Dn

are uniformly bounded and tend to a limit u(x,y,t) at almost all points
(xyy,t) as L=-p® and E, n, T~»0, the approach of each parameter to its
limit being through suitable values. To be more specific, let Ek’ M T
Lk’ k=1,2,... , be sequences of values of E, n, T, L, respectively,

such that the functions

Ek’ ﬂk"'-'

\lk(er;t) = uLk k(x:Y,t) ’

as stipulated, are uniformly bounded and tend to u(x,y,t) almost everywhere

as k=-»oo. In terms of

E 27 T,
Kk(x’Y’trY') = KL: k k(x9)'9t’y.) ’

the Riemann sums considered can be written as

ij(x’y’t,Y') uk(x)Y:tnY') dy' .

31

LA L i b A S A



NOLTR 62-<193

We shall need to prove the existence of the limit of these sums as k-»®

only in a weak sense to be described below. Let )

Qab: a, £ Y s

be a parallelepiped in y-space. Let v(x,t) be a continuous function which
vanishes for x k; and for t> T, where T is an arbitrary positive
constant. We shall need to know only that, under the hypotheses explained,

for any v as described and any numbers a and b, we have

5.6 f dy jvdxdt f(l(kuk - Ku)dy'=»0 ,
Qab

as k-» .
To see this, we write the integrand as

K(u.k -u) + “k(Kk - k)

and express the above integral as the sum of two, the first Jlk correspond-
ing to the first summand above and the second Izk corresponding to the
second summand. The boundedness of |uk|, the convergence of w and Kk’
and 5.5 show that Jlk and J2k both=»0 as ke=>m. Thus, contention 5.6
is proved.

We also remark that, from the definition of K;lj 30 and hypothesis (iii),

d n
5.7 " Z Kijpr £ %
jl

(this is the same statement as was made in 5.5 .) When assumption (iii)l

below is made concerning difference quotients for K, the following

n if & stands for '8 /¢ ,

-analogous statement can be made about K i J,:
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e/1 » OT the analogous differencing operator with respect to ¢ ,

5.8 2 ji: lo Kipul < Ky
jl

6. Statement of difference equations. The difference equations set up

below will be justified only for truncated problems in which, besides assump=
tions (i)° y (11), (141), (iv), (v)4 of sections 1 and 2, the following
additional hypotheses also are satisfied:

(i)1 e(x,y,t) and g(x,7,t) are Lipschitz-continuous with respect to
and b

X,¥,t with uniform constants we shall denote by ¢ respectively.

1 1°?
Furthermore, O0<c < c, and lgl < b, » where c and b are constants.
(iii)1 K(x,y,t,y') 1is continuous at almost every point ofiztr- If

DK(x,y,t,¥y') symbolizes a difference quotient of K(x,y,t,y') with respect

to any of the 2d + 1 arguments X0 Yoo t, rs=1, ..., d, e.g.,

K(x.y,fn“ﬁt’Y') - K(x9Y:t)Y')
, = (at > 0),

we have for a suitable constant k1

fIDK()h}')tQY')IdY' < kl .
(iv) (x,y) 4is Lipschitz—-continuous with respect to x with a
1

uniform constant denoted by bl' Also || < $,» where Oo is a constant.

(1v)y d(x,y) is uniformly Lipschitz=continuous with respect to y .
We now describe our difference scheme. Corresponding to 1.2 is the

initial condition

6.1 uwpy = 0 4,n3)
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and corresponding to 1.3 the boundary condition

6.2 ul, = 0 on&

iJ ’ S=l, o-.’d-

SyJ

Corresponding to the integro-differential equation 1.1 we set up the

difference equations

1 ¥l n > . 1 n+l n _
E(“ij =)+ g Mg T O%,3%5 T ¥y T
6.3
_ h d n n
- et 2 el
liti<t
for the following values of the indices:
[}
6.4 n=01, ... [Jl<L; [i[<I or 16 ..

Sy J

This scheme is recursive: for each choice of n and Jj , the values
of ugl, appropriately ordered, are successively obtainable from previously
calculated quantities. This fact will be more apparent from a rewriting of
equations 6.3 in terms of the Ts’ je We simply apply 5.3 in 6.3 .
Then, rearranging, we have, as equivalent to 6.3,

. ml _ TR - SR n+l
(1+Ozslgslq)uij = (1 'rcij)u].‘]:fe Z;ljsl"'rs,juij

6-5

n d n n
+ T gij + T IZI Kijj' uij' .
Jrigk

Assuming the u;'j to be known for fixed n and all i and j , we shall

see from this how the u?;l are determined. The determination is immediate

in the case j = 0. In the contrary case, j # o, u?}l is expressed in 6.5
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in terms of quantities indexed with n , presumed known, and quantities of

the type ugT;“ for which i' falls one step nearer some & than i

8y J
(the '»s 3’ we recall, carry boundary data). To be more exact, consider a
?

particular j # O. The intersection

j Qo\hsuj

s

of all the &s 3 for non-vanishing j S is not empty; let 13* denote any
y

index belonging to this intersection, and set

o= (TP 1),
o g 40 ®I

the product in the right member to include every operator T;lj for which
’

Iq $ 0. As 13.' varies over all possible positions and k, s=1,...,d,

over all needful, non-negative integers, the index

x|
T 1,91

S

varies over all the lattice points i at which u;:l is not already

prescribed in advance. Thus it suffices to show that, for any 13* s the
quantities

) i
- s\ n+l
6.6 ( l U T uilj

can be recursively determined. First, u’}ﬂ =(Tr ‘1”1 )un-;l can be
lj.] j * 0 SyJ ij J
s

calculated from 6.3 , u’f‘;l being known on VDS 3 vhen J_ $ 0. From
4

~1 ntl

this result, T, Uity 2 for j # 0, similarly can be found
14

J
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Induction would show that all the quantities 6.6 , in suitable order, can
be determined by appropriately continuing this procedure. Hence, the scheme
6.1-3 1is recursive, as asserted.

For future reference, we note that equations 6.3 also may be written

as
(1+°Z|J | n)u; n+l (1"“’13)“11 + 9% B, s‘i‘}l
]
6.7
+ ezcijlg;1+ ‘tgij + 'i:qd Z ngj' ur;j ’
s 5t (<L

where, for js 20,

6.8

]
(=]
-
(@]
1]
(S
=
-

sj sj s

and, for Iy < o,

6.8b st = —jsq , Csj = O.

7. OutlineAgfrconvergencegproof. The proof described in this section

applies to any truncated problem satisfying assumptions (i)-(iv) and (v)A
of section 1 and (i)l, (iii)l, (iv)l, (iv)y of section 6. For such a
problem, the solutions of the difference equations, ui’"’T(x,y,tL are

equibounded and, for any £ > O, satisfy Lipschitz conditions in ST - S(e)

with respect to Xy Vg ty r,s=1,...,d, which are uniform in this set
for all possible x,y,t,f,n,t,L. This will be proved in sections 8 and 10

below., Because of the uniform bounds and the uniform Lipschitz conditions,
from any infinite set of lengths L tending to infinity and of suitable

mesh widths €, n, v tending to zero, sequences Ek’“k’Tk’Lk’ k=1,2,...,
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¢an be selected such that the solutions

c T,
u(k)(x,y,t) = uL]l: k

Tk(x,y.t)
converge continuously -]-'/ to a function u(x,y,t) that is Lipschitz continuous,
unifornly so in Sy = s{€) for any € > 0. This limit function will be
seen to be a strong solution of the problem.

By continuity, u plainly satisfies the requisite boundary and initial
conditions, and we shall now see that equations 1.1 hold almost everywhere,

as well. Let v(x,t) be a function of class C' in the region :

x e, 0< t T (T > 0)

that vanishes identically in a neighborhood of the boundary of the region, i
(k)

and let v? = v(f i,nt) denote its restriction to the lattice S =
Ek! nk"rk
On this lattice, consider the difference equations 6.3 deter—

k
R (k) . n+l
mining u . We multiply the members of equation 6.3 by v, T, sum

over n and 1, and eliminate u-differences by Abel's method to obtain

: n ), . ntl _ ny _ z S “+1+Zc’?.vn+ln.= s
- Z Uij ‘tk(vi Vi) Med s 3 T 85,371 i3V %43 i

n,i n,i,s n,1

_ n+l n Z ntl 4 z n n
- 2 Vi &y * i % K150 Yagr

n,i n,i j

We now multiply this by E: Ty qi , for arbitrary a and b sum over

such that jn¢ Qa b’ and let k=» o . Continuous convergence, and the
’
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remarks in section 2 concerning the improper integral, show that, as the

result,

- 5 dy J\[ u(vt + 2 YV * cv)dxdt = f dyff v(g +jKudy')dxdt .
s s ,
Qa,b Qa)b

Thus, u satisfies equation 1.1 in a weak, integral sense. For any ¢>0,
however, u is Lipschitz continuous in S - S(E) . If Qa,b’ therefore,
intersects no coordinate plane ¥ = 0, the partial differentiations in the
above formula may be transferred to u by integrating by parts, and we thus
obtain

- dy viu + Y yu +cu-=g-=- (Kudy'${ dxdt = O
J‘ J‘J\ {t E:Ssxs f % ’
Qa,b

a formula valid for every function v, and every a and b, as described.
It follows that equation 1.1 holds almost everywhere, and, hence, is a

strong solution, as contended.

8. A bound for the soiution of the difference equations and an estimate
for its t—difference quotients. In this section, under the hypotheses, say,

of Section 6, we shall first prove

8.1 Iui’“”(x,y,t)l < M(t) ,

kt b k t
where M(t) = boe ° + Eg (¢ © -=1) . Then we shall obtain a Lipschitz

(<]
condition with respect to t of the form

38
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8.2 lugtﬂ"'r(x,y,t') - uE’ﬂ’T(X,}'jt")l < AQQ +Zlys|) ‘t' - t"l ,
8

where A depends on T,M(T), and the constants in hypotheses (i)l, (iii)l,
(iv)y, (V) -
For 0<nt < T, set
_ _ ..n
M = maxluij[ ,
the maximum being taken for [i| < I, |[j] <L . From the difference

equations 6.5, the estimate 5.7 , and assumptions (i)o and (ii) , we
have

+1 ' i
(1 +OZ|js|q)|u?J | < M+ 0% liglnM 4 +bT+TkM .
s s

For suitable determinations of i and j , however, Iuggll =M. -

Hence, we arrive at the inequality

Mn+l < 1+ ko'r)Mn + bo'r ’

from which, by induction,
n-1 n-2
M < (1+k°-r)nMo + b r[(1+k o) + (ke o)+ o0+ 1]

k nt k nt

b
< M°e° +r‘c’;(e° -1) .

Since M_ < 1)0 » 1inequality 8.1 follows.
To prove 8.2, we shall consider, in an analogous way, difference

—equations, initial values, and boundary values pertaining to the t~difference

39
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quotients
um-l -2 -
wo= .—il——i-li . J

ij T ' ;

(Difference quotients with respect to x or y cannot be estimated in quite
the same way, the first because of the boundary condition, the second
becauSeAthe pertinent difference equations will contain x~difference quotients
not known to be bounded.) Boundary values are zero, as before. Initial
values satisfy the inequality

8.3 Iv 1] | < C; s

where C ¢) z |3 |q +b + (c + kg ) 0 s as we easily see after sub-

stituting u%j = uyy + ugj in equation 6.7 (n=0). The resulting relations

may be written, in fact, as .
. — 20 .0 < -1
(1+ 8 L [3glnduyy = —weyquyy + 8 % BjX¥yy * 9 2_;— Cay¥s Vi
+OZB(uij+Xu)+-GZC (u +X )
o d Z (¢]
+ T + T x° u .
B3 7TV S T M
Hence, for W, = max |w,,| , we have
d i ij

(L+o T iglnlvl < 07 liglnwy +cyr,
S S
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and therefore

this was the contention in 8.3 .

Having considered the boundary and initial values of vgj y from
equations 6.7 we must now derive the difference equations the latter
quantities satisfy. These difference equations are easily seen to be again
of the form 6.7 , their coefficients, and the kernel in the Riemann sum,
being in fact unchanged, and the new inhomogeneous term that takes the place
of gﬁj comsisting of bounded quantities. Dividing by 1 + Cj , We
obtain a system of relations that we will regard as equations for

n _.n .
Vij = Vij//(l + Cj)’ by (v)4 (Section 1), the kernel

1
Kijj,(l + Cj,)/(l + cj)

in these equations, acted on by qd z:' » gives a uniformly bounded result.
The boundary values of the V?j are iero, their initial values, by 8.3,
bounded. Hence, by the argument by which we proved 8.1 , V?j is uniformly
bounded, L.e., (1+C, )‘1|‘u2;1 - u};|/* is uniformly bounded, at least

for 0<nt <T. This implies statement 8.2 .

9. qugdarzﬁbehaviqr. Here we shall consider how the solutions of the

difference equations, and associated sums related to the integrals

€ 0
flu(x’}':t)ldyr ’ flu(X;Y:t)l@r (e> 0,
0 -€

behave neat the boundary faces on which u was prescribed.
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The results do not depend on any kind of truncation. We also shall estimate
the boundary values of x-difference quotients of the solutions, but these
only in truncated problems. Three theorems are formulated, based on the
hypotheses of Section 6.

THEOREM 9.1, If Yp # 0, we have

9.1 lui’q’T(x,y,t)l < Ar,ylxr'c |  for 0<tLT ,

T,y

where A . = max(¢)l , (b, + koM(T))/IyrI ). (cr y is défined in Section 1,

’

M(T) in Section 8.)
Proof: Select any fixed r among the indices from 1 tod . With

fixed T > 0, for jr 0 set

P, = P_, T." u>
Jm r,]m 1£.9 I r,j 1,]I
TyJ
0<ncT/x

From equations 6.5, for (m+l)t £ T we obviously have

1
9.2 (140 TUINITET < pypea 2 ligley,

Jij
str

+ Oljrlq P, + bt ,

Jym=1

where b=1b_ + k M(T) .
(> )

Either IT;mju;1 jl reaches its maximum ij initially, in which case
’ -
| O
9.3 Pon imﬁ r,j ij < opme
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or, for some value of n,IT mj ril;l l will assume this maximum.

latter case, we can replace | rmj r;;ll in 9.2 by Py,

after some cancellations
9.4 Oljrlq ij < Oljrl,qz pj’m_l + bT.

It jr#o, since T =9 & we have

bt

m S Fywd T TR

‘and, by induction,

P

b(mll - m!)(
jun S Fym *C J.In

provided 9.4 holds for m" > m > m' . In the last inequality, replace

m" by m, and let m' be the least possible integer. If m'

ij < bm{/ljrl'\ ’

= 0, we have

In the

and obtain

e et

since Pj o O from the boundary condition; this implies 9.1. If m' > O,
’

relation 9.3 must hold for m = m' : hence,
P, < ¢.m'E + L (m - m')g
jm = 71 FRE
< mge max (), , W5 In);

this again implies 9.1.

THEOREM 9.2. Let 0< a <1, and let ¢ be a positive number divisible

by n such that
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e/q
9.6" f Z: max
i1 (xyt)e Xy
and
9.6 géf
. n max
iz (t)edy
where
jm
We note that

NOLTR 62~193

ey < b+ kMT) .

Iui’n’T(x5Yl’--‘,yr_lsjrﬂsyr+l)--~)ya5t)l

a
&c (C+x)

1. EsNy . ,
Rl CT AP AR IS ARTRRRTs M)

a
-(-CO.(C - xr) ’

¢.= o max(M(1),2,C) + (Byrk M(T)) [(20)*(1+10g(18¢))

Proof: The following calculations presume O < ljrln < €. Let

+ max Cl-ulog(l + N1 .

02

Q.. = max (ij, (blm £) .

ol I n(d;me) <85 [n(fy(m-1)8) + b=

since - ‘9|er'1 ¢1 E+ bt = (—Ijr[n ‘bl +b)r > (b-e 1)1)1: > 0

by assumption 9.5; hence,

9'7'

CIFMEICN. 9

<

Oljrln 1t BT

bt

IA



Rk cL A AR S S e e

ey 13 TN ) AT A AL e 1

NOLTR 62-193
In the case in which 9.3 holds, therefore, we obviously have

9.7 8|y ln Pip < olj In Qg * T
Even when 9.3 fails, since 9.4 then is valid, inequality 9.7" again
can be deduced. Thus, 9.7" holds without exception. With 9.7' , it
proves

9.7 8lidnq, < 8l dng py + 0.

We shall rewrite this result as

(1+0ls lney, < qp+olsdng y+or.

Setting o, T = (1+ 8li ™ , we thus have

J

A

+ a,btT

PY,m1 * 9

9.8 Q‘1 + (l=-a

m < %Yn

Now define

e/n
= P
Apm = 1 E 'ajqjm .

To prove 9.6 , it suffices to estimate Aom appropriately. Multiplying

9.8 by 1 ag y p=0,1,..., and summing over jr gives us

AomSA A A 1+bglog(1+0 €)

m ¥ fo,m1 " A1,

A A

< Apin * Apm1 T A my YR PE L2,

since
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We rewrite the last results as

9.9 A L - A - A

o om “o;m-l < 'Alm

and

P pm P

1l,m=

1

e

B~

log (1 +49) for p=0

for p=1,2y, see &

1 + DE log (1 + Q¢)

9.9 A _-A m-l ? »Ap*_l,m“ Ap-i-l,m-l + bE/p » P=12 s0s ]

Noting that A  -= ARQ

At BT

we have

9.10, A, <A+ buE Tog (1+0e)

and

9.10 A < .A

p pm ptl,m + mk/p

Hence,

=0, p=1,2,..., by summing with respect to m

p = 1’2,-00 .

911 A < A, .+ bu (log (140e) + 1 + % + ... +lp) .
H

om p+l

We now note the estimate

€y
d
A < @ | = __

(this assumes p > 1), where Q = max (M(T),z@lc) . Also, we recall the

<

46
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fact, known from Euler, that the expressions

R S 1l _ a6
l+ 5 * .0 + P log p

are positive and less than 1 . From 9.11 we thus have

9.12 A < Q/ep + bmE (log p + log (1 + @¢) +1) .

Now choose p such that
2 ¢ (m)® < 2 if O<mE <)
P = I ’

p=1 if mf > 1 .

We thus also have that

log p < log (1 + (mE)™%) ;

. hence, inequality 9.12 leads to

Q G Q
A, < 5(m€) + bg(mt:) ’

where b = b(zc)l—a(1+10g (1+6€)) + b max (l-u log (1 ~-C% .
: 0geeac

This result implies 9.6.

it o i ey g 5o

THEOREM 9.3. For a particular index r , suppose K(x,y,t,y') and
g{x,y,t) to be zero when IY}’ < w, w being, say, an exact positive multiple
of . Thenfor j_% 0, ied ., 0<nrt < T,

r r’j - -
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9.13

vhere A‘u = max (01 s (bo + ~koM(T))/w) .
Proof: Take O < Ijrlq w and m=1 in 9.2, Since Py mel =
ij,» 0= 0 , and, under present hypotheses, b can be replaced by zero, we

obtain

4 esTls AR Lo BRI GRS SR PR PO
r

Either IT;'lju;l jl reaches its maximum P 1 initially, in which case
’

e T <o

TyJ

, ~1 n+l|
r, 31

latter case, we can replace 1 n+1| in 9.14 by le s and the result

r 2J ij

or, for some value of n , will assume this maximum . In the

will prove P 51 = 0 . Therefore, j 1 £ < fbli without qualification when
0< Ij [n < w, while Theorem 9.1 applies in the contrary case lj h>w.
Thus, 9.13 1is completely proved.

10. stchitz conditions in truncated problems. Our proof of convergence

for truncated problems (section 7), under assumptions (i-iv), (v) (i)l,

(iii) (iv) (iv) (sections 1 and 6), presumed knowledge of Lipschitz

_conditions with respect to Xor Voo t, ’»s=1, ..., d, satisfied for
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0<t<T by w’™(x,y,t) uniformly in x,y,4,€,n,7,L. A suitable
Lipschitz condition with respect to t already is to be had from section 8.
Here, we shall deduce the other Lipschitz conditions needed, proving, namely,
that, for 0 <nt < T, the difference quotients

—lle u

s, 5

ijl ’

are bounded uniformly with respect to %, n, T, L and all indices.
Let w describe the truncation: i.e., suppose K(x,y,t,y') and
&(x,y,t) to be zero if, for any s, Iysl Swj; w>O0. First considering

differences with respect to x , i.e., i=differences, we shall prove

k n b.+M(nt)(c,+k,) k nt ,
10.1 1|6 uijl < e o max (OI,AU) + -l-__i_._l._lﬁ (e® -1) ,

(]

Au) being the constant defined in Theorem 9.3.
Estimate 10.1 will be obtained from difference equations for the i-
differences considered, which we may obtain by applying Br’ defined in 5.1,

to both members of equations 6.7 . We use the identity

5r(aivi' = a; Grvi +¥v, - ba,,

valid for any quantities a; and v, indexed with i, +to obtain
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n

1+°Eijhn supyt = (1= w7 o

10.2
) n+l 1 n+l
+QZB X, g a £ +ezscijg g 6uij +T bgij
d n -1 .n . Jh
T 1 :%; Kigpr § gy + % Sy
where

n 1 n d -1
Sj_j _=- 4 (arcij)xru + 1 z 14 (5 Kijj')xruij' .

By hypothesis (1), and inequalities 5.8 and 8.1,

10.3 s3] < (e + Ky I(mm) g

Because of the existence of the boundary, there are i-differences
6 u mtl um'1 - X un+l in right members of equations 10.2 that never
r iJ ij rij
appear on the left., These are of two types, the first being of those with
indices 1 ¢ ‘05 i s # r; these vanish. The second type is of differences

’
for which i or Xri is on ‘or i We shall speak of the differences
H
brugl of this type, or of the corresponding difference quotients, as being
Msituated on", or "on", &r § + Their behavior is controlled by inequality
’

9.13, which we may reword as
1
10.4 |8 uijl A, on ‘br,j .
For 05 ms T, set

50
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am]. n
' = ; = Dt
D! =max Iaruijl » D = max (Dn’ Au) .

ryi,d

From 10.2 and 10.3 we have

0.5 (1+83 |jslq.)z‘1|arufi‘;1l <A+ kTD +8 3§ [n0L, +bre
s L 8

where b' = b, + M(n’t)(cl + kl). Let the quantities

-1 n+l
e ugy

take their maximum Dr'1+l say for r=r', i=1i', j=j3'. If i EgDr,’j,

the quantity 10.6 in the left member of 10.5 may be replaced by

t . . ! ? t
Dhe1 3 thus we deduce Dn+1 < (14-1:0"-’)Dn + b't and

' '
10.6 Dlyy S (+k T)D + b't .

If, to the contrary, i’ e&r,’j,, then by 10.4 D' <A <D : hence,
relation 10.6 holds in any event. This relation also being true when

the left side is replaced by Au, we conclude that

1
10.7 Dn+l S (1 + koT)Dn + bt .

Reasoning as at the end of section 8 proves from this that
k nt o k nt

D < e® D + =(e° =-1) ,

vhile D o < max (¢1,Au) . Thus, estimate 10.1 is completely justified.

A bound for q’lleru:.:jl is to be had as follows. First, apply n-'ls
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to equation 6.3 deriving difference equations that the difference quotients
dﬁierugj satisfy. The coefficients in the difference equations are bounded
because of 10.1 . The initial values of the difference quotients are known,
and their boundary values are zero. Then arguing as in section 8, from the
difference equations deduce recursive inequalities for
=] n
En = :?:,j n |eruij! ’

and, from the recursive inequalities, relate En to E° . The result is the

desired bound.

11. H8lder conditions in pptrugpg&e@;prqplgms. Proof of Theorem 3.

bi—

Under hypotheses (i-iv) of section 1, any problem has a weak solution,

obtainable (Section 4) as the limit of solutions of truncated problems; if
absolutely continuous with respect to t,xs, s=1,...,d4, 1in the region
5y - 5lo) ,
absolute continuity when hypotheses (i)a’ (i)t’ (iv)l, and (v)1 to (V)L of

this solution is strong (Section 1). Here, we shall prove

Section 1 are added to the others. Under these added assumptions we shall
show, more specifically, that the (weak) solution of the problem satisfies
a Lipschitz condition with respect to t and H8lder conditions with respect

to Xy 8= 1,...,d, that are uniform in the complement

H, !ys[ >e , s8=1,...,d4,

of an arbitrary e-neighborhood of the planes Yg = 0, s=1,...,d4d . This

solution accordingly being a strong solution of the problem, Theorem 3 will be

proved.
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As before, we normalize c¢ by the condition ¢ > O .

The Lipschitz condition in t is immediate: by Section 8, such a
condition holds uniformly in the approximating truncated problems, and the
condition of .course is preserved in the limit. The HY¥lder conditions with
respect to x remain to be considered. Since such conditions also are pre—
served under the operation of taking a limit, it will suffice to prove, under
the stipulated assumptions, that the solutions ui’"’T(x,y,t) of difference
equations for truncated problems are subject to Hdlder conditions with respect
to Xy 8= l,...,d, that, for y ¢ He and 0<t<T, are uniform with
respect to x,y,t,f,n,t,L. It will be enough, in other words, to find bounds
for |(X - l)u%i/m{)“ that hold for nt < T, jneH_ , and all &,n,t,L.

e

We shall do so uhder the restriction, for instance, that n = 0(ge) .
From equations 6.7 we obtain

. n+l 1\ oD
n.1 (e Es FREN o ey = Q- wxﬁcgj)(x';- 1)y,
+9 Z stxs(x;.ll - 1)11‘1‘}'1 +9 z cijgl(x'z’f - l)u;:_;l

d n
et 2 ML G-Iy

T R2 ’
, ~“ij,rm
[3* <t

where

n = (Y0 _1\ . 0 m _ n d z - .
Rij,rm = (X: l)cij uij + (Xr l)gij + 1 _ (X: : l)szj, uij' .
lirl<
Because of the existence of the boundary, there are differences
(x:- l)u:;1 in right members of the above equations that never appear on

~the left. These are of two types, the first consisting of those for which
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ie 5,5 s # r; by the boundary condition, these vanish. The second type
of difference is that for which i or Xri is on Jyr,j; Theorem 9.1
estimates this second kind of difference, but not uniformly: hence, reason-
ing of the type of section 10 camnot be used unmodified.

For 0<nt T, 1let

Z?j = max} l(x“‘ 1)u

wvhere maxi indicates a maximum taken for such indices i as do not
correspond to a boundary value (a value of one of the two kinds discussed
above) of the difference concerned. The boundary values are estimated by

P defined in section 9. Hence, for the quantity

rjm ’
Apgn=max @, 5 Po) when § $0
= Zgjm when j_ =0
ve have
1.2 |8 = Dufyl < &in

for all values of the various indices.
. y n , n a
A uniform estimate for A}jm (of the form A}jm>5 constant (mf)”) ,
according to a previous remark, is out of the question. For any ¢ > O

satisfying condition 9.5 , such an estimate will be possible, however, for

E® = max A, .
£rm e<|j Iq_Ln rjim
0<|j l< L
(s +°r)
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The process of estimation will involve, as auxiliary quantities besides the

latter,
e/n
I = max n n
N P S ~Z‘1 Orsm
8 = J =
(s#r r
£/1

Concerning the initial values of the new quantities, it is pertinent to
state

11,32 B < max (§, (b +kM(T))/k) mE ,

as follows from Theorem 9.1 and hypothesis (iv)l, and

o]

11.3b Irm

< e@l mE{ + Ca(mi)a ’

a consequence of Theorem 9.2.
The estimation process begins with the observations that

n

lRij’m

| < er(me)®
where. ¢! = M(T)(ca + ka) +b , and that

D el s WY (T T

3]s 3y <ljilnge [3tlne
(sfr)
+ term with j! = 0)|< 2k I:m + kg E:m + 2kn M(T) .
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From these and 11,2 , equation 1l.1 easily gives us the preliminary in-
equality

: n+l n n+l n .
(149 2 15gln) By € Sgn * Gis.ldsln alip + AT+ 2unk M(T)

n 1 a
+ ko TEerm + ctt(mg) .

If, when j, % 0. Z.?;i be replaced by Pojm» the inequality remains

good. Hence, Z.:;; can be replaced by A:;i . Making the replacement and

a consequent cancellation, we arrive at

n+l n n n ' a
N4 A $Bn t w2k I+ k E__ +c'(mg)” +2nk M(T)) .

Summing appropriately over jr » we now easily deduce

n+l n n Nl ' a .
I S Irm+ + 1(2k € Irm+ eko I‘"erm + ec'(mE)"+ 2qe k M(T))

and a similar inequality concerning Igm- 3 from both, we have

1.5 I < (eakee)1? 4+ ve(k ED 4+ ot (mE)® + 2qek M(T)) .

From 11.4 we also have

n+l
1.6 Enc < (k TED L+ T2k I+ ot (mE)® + 29e k M(T)) .

Sy
Hence, for
_ o _ n n
Fn - Frm = max (Irm’ Esrm)

we can deduce the recursive inequalities
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For S (1 + a-c)Fn + tfe'(mE)® + 2nek M(T)] ,

where a = (ko + 2k)max (1,¢) . By an inductive process like that of

section 8,

- % )
F, < eamFo + (2—==) [c'(mE)® +20ek M(T)] ,

vhile F_ can be estimated from 11.3 . The result is a bound for Fn/(mz)“,

and thus for A:rm/(mi)a , depending only on the constants of the problem.
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NOTES

See the discussion and references in Section 6, Douglis,
On discontinuous solution of quasi-~linear, first order
partial differential equations, NAVORD Report 6775, U. S.

Naval Ordnance Lab., White Oak, Md., 22 Jan., 1960.
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